Influence of Nozzle Orifice Geometry and Fuel Properties on Flow and Cavitation Characteristics of a Diesel Injector

نویسندگان

  • Sibendu Som
  • Douglas E. Longman
  • Anita I. Ramirez
  • Suresh Aggarwal
چکیده

Cavitation refers to the formation of bubbles in a liquid flow leading to a two-phase mixture of liquid and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Fundamentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling, or by decreasing the pressure at a constant temperature, which is known as cavitation. Since vapor density is at least two orders of magnitude smaller than that of liquid, the phase transition is assumed to be an isothermal process. Modern diesel engines are designed to operate at elevated injection pressures corresponding to high injection velocities. The rapid acceleration of fluid in spray nozzles often leads to flow separation and pockets of low static pressure, prompting cavitation. Therefore, in a diesel injector nozzle, high pressure gradients and shear stresses can lead to cavitation, or the formation of bubbles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of nozzle geometry and injection conditions on the cavitation flow inside a diesel injector

Cavitation and turbulence in a diesel injector nozzle has a great effect on the development and primary breakup of spray. However, the mechanism of the cavitation flow inside the nozzle and its influence on spray characteristics have not been clearly known yet because of the internal nozzle flow complexities. In this paper, a comprehensive numerical simulation is carried out to study the intern...

متن کامل

Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001). Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results includ...

متن کامل

Influence of nozzle geometry and injection conditions on the cavitation flow inside a diesel injector

Cavitation and turbulence in a diesel injector nozzle has a great effect on the development and primary breakup of spray. However, the mechanism of the cavitation flow inside the nozzle and its influence on spray characteristics have not been clearly known yet because of the internal nozzle flow complexities. In this paper, a comprehensive numerical simulation is carried out to study the intern...

متن کامل

Pro O F Co Py [ G Tp - 08 - 1324 ] 002001 G Tp

Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a compu...

متن کامل

Conversion of Diesel Engine to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

This paper is the representation of the computational and experimental methods of a new injector nozzle for a sequential port injection CNG engine. The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Next, a simulation of the fuel flow of the new injector nozzle was made using FLU...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017